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The kinetics of normal grain growth 
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The relationship between the quasistationary distribution functions in normal grain 
growth and the corresponding grain-growth velocities is investigated. The restrictions 
imposed by volume conservation lead to a simple differential equation which describes 
quasistationary grain growth. This equation allows us to express the reduced growth 
velocity (dR/dt)/(dR*/dt), where R* is the scaling grain size, in terms of the corre- 
sponding distribution function and to express the distribution function by means of 
the reduced growth velocity. General conclusions about the shape of distribution 
functions can be drawn from these expressions. 

1 .  I n t r o d u c t i o n  

During normal grain growth, large grains increase 
while small grains decrease in size. Since the 
volume of the system is constant, this results in 
an increase in the mean grain size and a decrease 
in the number of grains in the system. Formally, 
normal grain growth may thus be looked upon as 
the motion of individual grains in grain size- 
time-space. The flux ] of grains in this space is 
caused by a diffusion-like process or by a driving 
force, thus: 

] = - - D W  + f ~  ~ (1) 
OR 

where fo  is the distribution function which is a 
function of size (R) and time (t), v ~ is the drift 
velocity due to a driving force F, and D is formally 
identical to a diffusion coefficient, which only 
depends upon the specific grain-boundary mobility. 
The continuity of the grain flux in s ize- t ime-  
space gives: 

~fo ~ 0 {  ~fo~ ~ o o .  
- = ). 

(2) 

This expresses that a change in the number of 
grains in a size-class (R) is caused by a flux from 
neighbouring size-classes. 

Louat [1] stressed the diffusional character of 
the process, and put v ~ equal to zero. He also 
argued that D is virtually independent of f o ,  R 
and t and arrived at the diffusion equation: 
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~fo b2fo 
- -  = D ( 3 )  
0t 0R 2 ' 

with the boundary condition f O ( o , t ) = O ,  
f0  (0% t) = O. The volume conserving solution 
to this diffusion problem is: 

[ f ~  ---- A ' R  exp--  ~ , (4) 

where A is a normalization constant, which varies 
with time, and k is another time-dependent 
parameter. 

Beck [21, Smith [3], Feltham [4], Hillert [5] 
and others, assumed more or less implicitly that 
the drift of grains in grain size-space is the 
dominating factor during normal grain growth, 
and that the driving force F is in some way related 
to the elimination of grain-boundary area. ttillert's 
analysis takes as the starting point: 

~f0 
t- ~-~( f~176 = O, (5) 

Ot 

which, of course, is obtained by neglecting the 
contribution from diffusion to the flux (D = 0). 
Two different approaches are now possible for 
further analysis. One can start with a particular 
expression for the drift velocity v ~ , and then solve 
for f o .  This analysis also results in expressions for 
the variation with time of the mean grain size, 
which is an important parameter. This is Hillert's 
approach [5]. He argued for the following relation- 
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ship between the drift velocity and the size of the 
grains: 

v ~ = 3 '  -- , (6) 

where 3' is a factor which depends on the energy 
and mobility of the grain boundary, both of 
which were assumed to be independent of R. Rcr 
is a critical grain size, and varies with time. The 
kinetics of normal grain growth now becomes 
identical with the kinetics of Oswald ripening with 
the interphase reactions as the rate-controlling 
reactions. This process has been analysed in detail 
by Lifshitz and Slyozov [6] and Wagner [7], and 
Hillert followed their analysis closely. 

The assumed relationship between drift velocity 
and grain size (Equation 6), which is quite essential 
in this analysis can hardly be checked exper- 
imentally, and only values of v ~ at some limiting 
values of R can be discussed with reference to 
experiments. This is a serious limitation. The 
alternative approach is to take fo  as the funda- 
mental input in the analysis, as this can be deter- 
mined experimentally. By means of Equation 5 
one can determine v ~ and also the mean growth 
rate. From a knowledge of v ~ at large values of R, 
interesting conclusions can be drawn as to the 
shape of f. An approach along these lines was 
first tried by Feltham [4], and will be further 
developed in the present work. 

2. Theory and results 
In this section we develop a formalism which 
allows us to calculate v ~ from a given grain-size 
distribution f o .  A necessary condition is that the 
distribution is quasistationary, which means that 
it can be made time4nvariant when appropriately 
scaled. If the following scaling is used 

R 
13  ~--- - -  

R*(t) 

f(p) = R*4(t)f~ 

and 

v(p) = v~ (R, t)l(dR*/dt) = (dRIdt)l(dR*/dt), 

it is shown in Appendix 1 that f(p) obeys the 
following equation: 

dr(p) d 
4f(p) + p If(p)- v(p)] = O. (7) 

dp dp 

The scaling grain size R*(t) can be chosen in a 
number of ways but, as shown later, it is convenient 

to chose R* = Rer , where Rer is the grain size at 
which v ~ is zero. Equation 7 can now be solved 
for either v or f (Appendix 2): 

; f ( x )  dx 

v(p) = p - 3 (8a) 
f ( p )  

Vofo e x p ( _ 3 ; ; x ~ _ ~ ) ,  (8b) f6o) - v - p  

where Vofo is the rate of loss of grains from the 
system. If the expression for Vo given by Equation 
6 is appropriately scaled and used in Equation 8b, 
one obtains the Hillert distribution. If, instead, an 
experimentally determined distribution function is 
put into Equation 8a, v can be determined as a 
function of p. In Fig. 1 the variation of v with p, 
as calculated from Equation 8a is shown for 
several proposed grain-size distribution functions. 

The log normal distribution function 

fo  = k , ~ e x p [  I k2 R t ) (9) 

where kl is the normalization constant, k2 = x/2 
in a where a is the geometric width of the distri- 
bution, and /~ is the geometric mean grain size 
has been claimed by several investigators [4, 8] 
to be the distribution function obtained exper- 
imentally. After applying Equation A4 to find 
Rer, Equation 8a is used to find v. ~le  integration 
can be done analytically and gives: 

(1,n  l -- erf \k-22 ~ ] ]  
v(p)  = p 

leo xp --~-21n 

where t5 = R/Rcr. 

(lO) 

Aboav and Langdon [9] found a better fit of 
experimental data to the function 

].o = A1 exp {--A2N/R--x/A312}. (11) 

A procedure similar to the one carried out for the 
log normal distribution function gives: 

3 3~/p ,/~ 
v(p)  = p A~ x/A*: ' 

1 -- erf (x/A~ (x/P -- x/O )) 
exp (-A*~(x/p --x/p )2 (12) 

Here A ~ = A 2Rer. 
In both cases/5 will depend upon ,the width of 

the distribution function. The graphs in Fig. 1 are 
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Figure 1 Reduced drift velocity as a function of  p = R/Rer for several distribution functions. (1) The Hillert-distri- 
bution: - o - o - ;  (2) Log normal distribution, width o = 1.4: - v - v - ;  (3) Louat-distribution: - X - •  (4) Aboav 
distribution: . . . .  ; (5) Feltham-distribution: - -  

meant to represent typical experimentally observed 
widths. 

Also included in Fig. 1 is the distribution 
function found by Louat by considering the 
grain-growth process as a diffusional process 
(Equation 4). In this case Equation 8a yields: 

.v(p) = p 2 (13) 

where k* = K/Rer (see Equation 4). 

3. Discussion and conclusions 
Feltham [4] first tried to derive a drift velocity 
from a distribution function. Unfortunately, the 
drift velocity arrived at by him does not give a 
log normal distribution function as claimed. 
This can be demostrated by inserting his ex- 
pression for v into Equation 8b. In fact, his 
solution is only the first term in a series expansion 
which gives the complete solution to a Fredholm 
integral equation. Using the procedure outlined by 
Hillert to determine the unknown constant in the 
reduced growth rate, one finds: 
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1 
v(p) = 2e -- In P, (14) 

P 

and the corresponding distribution function 

exp ~0 x--elnxJ" f(0)  p2 _ 2e In t) 

(15) 

This distribution function is shown in Fig. 2. In 
contrast to the log normal distribution function 
which has a tail extending to infinity, the correct 
solution to Feltharn's drift velocity shows a cut-off 
at p = x/e and the nature of this cut-off is quite 
similar to the cut-off in the Hillert distribution. We 
also find that the square of the critical radius 
increases linearly with time. 

As can be seen from Equations 10, 12 and 13 
and [4], all the distributions functions except the 
one given by Hillert give drift velocities that go to 
infinity or zero for large grain sizes. No driving 
forces can be imagined that give such drift velocities 
for large grain sizes. In fact, all distribution func- 
tions corresponding to drift velocities limited for 
large grain must have a cut-off. This can be demon- 
strated as follows: assume that the drift velocity 
is limited for large values of p and approaches 
some constant value. If  v is put equal to a constant 
K in Equations 7 or 8b for p greater than a, one 
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Figure 2 Quasistationary distribution functions as a function of p = R/Re: . . . . .  
Hillert's distribution. 
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Feltham's distribution; - -  

obtains 

Vafa (16) 

It thus appears as if a distribution with a tail 
falling off as l ip 4 is an acceptable solution. 
However, as shown in Appendix 3, volume con- 
servation places the following restrictions on the 
distribution functions: 

lim p 3 ( p _  v)f(p) = O. (17) 
p ----> ~ 

Equation 16 does not satify this requirement. 
Hence we conclude that all distribution func- 
tions corresponding to a limited drift velocity 
for large values of p have a cut-off. Alternatively, 
this means that all distribution functions with a 
tail stretching to infinity cannot have been devel- 
oped by an Ostwald-ripening process. By a pro- 
cedure similar to the one used by Lifshitz and 
Slyozov to determine the growth-rate constant, 
it can be shown that the v-curves in Fig. 2 must 
touch the line v = p and the cut-off occurs at the 

grain size of the touching point. As is seen in 
Fig. 1, only the Hillert and Feltham drift velocities 
give rise to a cut-off. 

The Hillert distribution is much more peaked 
than the distribution found experimentally. This 
means that the driving force suggested by him levels 
off too rapidly with increasing p. If the diffusional 
character of grain growth is a contributing factor, 
this would bring about a levelling off of the most 
peaked part of the distribution because of the great 
gradient in the distribution function in that region. 
This approach is not followed further here. 

We have recently derived quasistationary distri- 
bution functions by computer simulation of grain 
growth [10]. This also resulted in a rather peaked 
distribution with a cut-off. In this first modelling 
the contact area between grains was modelled in 
a rather crude way, and it is hoped that when the 
contact area is better accounted for, and when the 
model grains are packed in a real three-dimensional 
fashion, the resulting quasistationary distribution 
will be in better agreement with experiment than 
at present. 
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Appendix 1 
The continuity equation reads 

0f ~ _ ~_ (fo. 730). 
0t OR 

We introduce the following scaling 

fCo) = R*(t) 4" f~  t) 

73@) = 73~ - dR/dt  
dR* / dt 

(A1) 

(A2) 

p = R/R*(t) .  

The first of these follows directly from volume 
conservation of a quasistationary distribution 
function. When introducing these variables into 
Equation A1 it transforms to 

df(p) d 
4f(p) + O - -  If(p).  v(p)] = 0. (A3) 

dp dp 

Given an experimentally determined grain-size 
distribution function f(R), the critical grain size 
R= and thus p is found from Equation 8a: 

r(x) dx 
73(p=Per = 1 )  = 1 - -3  - 0 

A1) 
thus 

R er = 3 (A4) 
f(R or) 

Equation A4 can be solved numerically when f(R) 
is known. 

Appendix 2 
Equation 7 can be rewritten in the following way: 

d 
3 f + - ~ p ( p . f - - f . v )  = 0 (A5) 

This equation can now be integrated directly to 
give Equation 8a. Equation 5 can also be rewritten 
in the following way: 

d f / d p  (d/dp)(p -- 73) 3 

f p - - v  p - - v  " 

Multiplying by dp and integrating from f (p  = O) = 
f0 to f ( p )  gives 

in f - l n - - - -  
fo 

where 730 = v(p = 0). 
Equation 8b. 

7 3 - p  fo 9 3do 
730 p - - v  (A6) 

This is equivalent to 

Appendix 3 
Take the differential Equation 7 and multiply 
by p3 

df 03 d 4fp3 + p4 -~P = -~p ( f "  V) 

which can be transformed into 

d 
dp ( p 4 f _ _  p 3 f .  73) = - -  302f  �9 V. 

Integrate this equation from zero to O 

-- f ;  3x2 f (x )v (x )  dx 

fo~ d = ~ [x~f(x)-x3f(x)73(x)] dx. 

The integral on the left-hand side is proportional 
to the change in volume for the range 0 to p and 
is thus zero if all particles are included, hence 

lim p 3 ( p - v ) f ( p )  -+ O. 
, 0  - - +  ~ 
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